The Integers and Division :
a,b belong to Z {a!=0}
a|b ==> b=a×k , k is integer
a : factor / divisor
b : multiple
Ex: 77|7 False {7=77×?}
7|77 True {77=7*10}
0|24 Flase {24=0×?}
24|0 True {0=24×0}
*Theorem : All a,b,c belong to Z
1.a != 0 ==> a|0 and a|a
2.(a|b and a|c) ==> a|(b+c)
3.a|b ==> a|bc
4.(a|b and b|c) ==> a|c
5.[a|(b+c) and a|b] ==> a|c
Prime Number {จำนวนเฉพาะ}{ចំនួនបឋម}
Prime is p , p > 1
Prime is the number that has only 1 & itself as divisor / factor
Beside of Prime number are Composite number {จำนวนประกอบ}
Prime Factorization : is making the positive integers to equal the multiply by some Prime numbers
Ex: 100 = 2×2×5×5=2²×5²
Alogrithm of PrimeNumber:
--------------------------------------------------------------------------
boolean isPrime(integer n)
if ( n < 2 ) return false
for ( i = 2 to n-1 )
if ( i|n ) {if n divide by i no left remainder}
return false
return true
--------------------------------------------------------------------------
The Division
Theorem :
(a-r)/d = q
a = d×q+r and 0 <= r <= |d|
a : dividend / ตัวตัง / តំណាងចែក
d : divisor {d != 0} / ตัวหาร/ តួចែក
q : quotient / ผลหาร / ផលចែក
r : remainder / เศษ / សំណល់
Greatest Common Divisor { gcd(x,y) } ตัวหารรวมมาก តួចែករួមធំបំផុត
gcd(a,b) = d = max(d: d|a and d|b) <=> d|a and d|b and All e belong to Z ,(e|a and e|b) ==> d >= e
gcd(a,b) = {min of multiply of prime numbers of a & b}
Ex : gcd(20,15) = ?
20 = 2×2×5 = 2² × 3^0 × 5
15 = 3×5 = 2^0 × 3 × 5
gcd(20,15) = 2^0 × 3^0× 5 = 5 #
No comments:
Post a Comment