Integrals involving
[edit] Integrals involving
Assume (x2 > a2), for (x2 < a2), see next section:
Here , where the positive value of is to be taken.
- m\ge0\mbox{)}" src="http://upload.wikimedia.org/math/7/e/c/7ec61e0b86221a7e14575832d055c1d9.png">
[edit] Integrals involving
[edit] Integrals involving
Assume (ax2 + bx + c) cannot be reduced to the following expression (px + q)2 for some p and q.
- 0\mbox{)}" src="http://upload.wikimedia.org/math/b/9/7/b9786694b8364705405868b754f3e73a.png">
- 0\mbox{, }4ac-b^2>0\mbox{)}" src="http://upload.wikimedia.org/math/0/d/6/0d6ddd4644254d630d3993720801c6ad.png">
- 0\mbox{, }4ac-b^2=0\mbox{)}" src="http://upload.wikimedia.org/math/6/c/f/6cfab7115ce8ce8a82a1d238a1a80b7b.png">
[edit] Integrals involving
- 0, \quad a x > 0\mbox{)} \\ -\frac{2}{\sqrt{b}} \mathrm{artanh}\left( \frac{S}{\sqrt{b}}\right) & \mbox{(for }b > 0, \quad a x < src="http://upload.wikimedia.org/math/1/e/b/1ebd0028aa19fcf88af1c1ac87e293b9.png">
- 0, \quad a x > 0\mbox{)} \\ 2 \left( S - \sqrt{b}\,\mathrm{artanh}\left( \frac{S}{\sqrt{b}}\right)\right) & \mbox{(for }b > 0, \quad a x < src="http://upload.wikimedia.org/math/6/1/2/612fd00fa1ae63401b55deaa24ee002f.png">